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Pressure-Gradient, Velocity-Velocity Structure Function 
For Locally Isotropic Turbulence in Incompressible Fluid

Reginald J. Hill

ABSTRACT. The purpose of this report is to give details such that an associated journal article 

can be brief. For clarity and for ease of associating topics in the two documents, some of the 

equations in the journal article appear here as well. However, many equations here do not appear 

in the journal article. The two-point difference of the pressure gradient correlated with the product 

of two, two-point differences of velocity components is studied. We call this statistic the pressure- 

gradient, velocity-velocity structure function. An equation is derived that relates this statistic to 

the third- and fourth-order velocity structure functions. The Navier-Stokes equation, 

incompressibility, homogeneity, and local isotropy are used; no other assumption is used. We give 

quantitative criteria for the results to be valid under the less restrictive conditions of local 

homogeneity and local isotropy. The method of derivation is to use algebraic identities and 

incompressibility to eliminate those statistics that do not obey local isotropy and local scaling.

The results are sensitive to departures from local isotropy and incompressibility. Our equation 

relates two-point statistics and is analogous to Kolmogorov’s [Dokl. Akad. Nauk. SSSR 32:19,

1941] equation that related second- and third-order velocity structure functions. The inertial-range 

formulas for the pressure-gradient, velocity-velocity structure function are obtained, and the viscous 

range is discussed. It is shown that the pressure structure function can be expressed in terms of 

the pressure-gradient, velocity-velocity structure function.

1. INTRODUCTION

The purpose of this report is to give details such that an associated journal article can 

be brief. For clarity and for ease of associating topics in the two documents, some of the



equations in the journal article appear here as well. However, many equations here do not 

appear in the journal article.

The von Karman-Howarth equation (von Karman and Howarth, 1938) relates second- 

and third-order two-point velocity correlations, and Kolmogorov’s (1941) version of their 

equation relates second- and third-order two-point velocity structure functions. The advantage 

of Kolmogorov’s version is that relationships between the structure functions can be derived 

on the basis of local homogeneity and local isotropy, as distinct from isotropy. One logical 

extension of these equations is discussed at the end of this Introduction. Another logical 

extension of Kolmogorov’s equation is to consider an infinite hierarchy of equations that 

relate two-point structure functions, Kolmogorov’s equation being the first equation in the 

hierarchy. Like Kolmogorov’s equation, the purpose of each equation in the hierarchy is to 

relate statistics that obey local isotropy. We derive the next equation in the hierarchy of two- 

point equations and use it to study the pressure-gradient, velocity-velocity structure function 

defined by

*y*(r) — — (i,Uj U.)(Uk Mt)(P|(. ^*1,')

+ (ii, - up (uk - u') (Pu - P[y)

+ (w(. - up (Uj - up (P{k - P'k,)) . (!)

The notations are as follows: P is pressure, w(. is a velocity component, angle brackets denote 

averaging, and a variable is primed or unprimed depending on whether it is obtained at point
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x' or X, respectively; furthermore, r = x- x', the notation |i denotes the gradient with 

respect to x, |i' denotes the gradient with respect to x', and p is density. In the Appendix, 

we relate Xjjk(r) to other statistics for the case of isotropy. Note that the second and third 

terms in (1) are the same as the first term except for cyclic permutation of the indices. Thus, 

Xijk( r) is unchanged by interchange of any pair of indices; it therefore has the simplest 

isotropic formula for a third-rank tensor.

In sec. 2, the Navier-Stokes equation, incompressibility, and homogeneity are used to 

derive the next equation in the hierarchy of two-point equations, namely,

+ 2v[Z>0i(r),„ + V?)] , (2)

where X.jk( r) is defined in (1) and

£>,,.< r) - ((«, - «') (u - u') (u, - «,')) (3a)

D,JU(n ■ ((«, - «') («, - «/)(«, - «;> (u, - «;>) (3b)

z,j,( n = («-«,) (C„ * * («; -«,) -«-«,) * cp), (3c)

where = uj{l uk]r Where applied to a statistic, the notation |i denotes differentiation with 

respect to r.; an example is the second term on the left side of (2). Summation is implied by 

repeated indices. Thus, the subscript \ll in (2) denotes the Laplacian operator, and Dijkl(r){l 

is the first-order divergence of Djjkl(r). The dot above the first term in (2) denotes the 

derivative with respect to time with x and x' held fixed. In sec. 2, we give the conditions
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for validity of (2) under the less restrictive assumption of local homogeneity, as distinct from 

homogeneity.

Recently (Hill, 1993; Hill and Wilczak, 1995), we related the pressure structure 

function to the fourth-order velocity structure function, defined in (3b). The pressure 

structure function is defined by

(4)DF(r)

In sec. 6, we obtain the pressure structure function in terms of components of X.jk(r) on the 

basis of local isotropy. Recently (Hill, 1996), we used the Navier-Stokes equation to derive 

formulas for the statistic <Pum> - kP'um^-, in sec. 6, we relate this statistic to Xijk(r). 

In sec 3, we simplify (2) on the basis of local isotropy. We thereby obtain in sec. 4 an 

inertial-range formula for components of Xijk( r ), and we discuss the viscous range in sec. 5.

The derivation of (2) given here, as well as the derivations for the pressure structure 

function in Hill (1993) and Hill and Wilczak (1995) and the pressure-velocity-velocity 

statistic in Hill (1996), are distinct in an essential way from derivations of pressure-related 

statistics in books and other papers. The essential simplification used in Hill (1993, 1996) 

and Hill and Wilczak (1995) is the application of incompressibility conditions on fourth-order 

velocity statistics to eliminate large and extraneous terms from the equations. On the 

contrary, previous work [cf. Monin and Yaglom (1975), secs. 14.4 and 18.2] derived the
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pressure-related statistics in terms of fourth-order velocity correlations without simplifying by 

use of incompressibility conditions. Subsequently, the assumption of joint Gaussian velocities 

was used to reduce the fourth-order velocity statistics to second-order statistics. 

Incompressibility conditions on second-order velocity statistics are then used to simplify the 

expressions. In fact, incompressibility is the essential condition, and the joint Gaussian 

assumption produces little additional simplification (Hill, 1993, 1996).

Another logical extension of Kolmogorov’s equation and the von Karman-Howarth 

equation is to test and use closure hypotheses. This extension was studied by Proudman 

and Reid (1954) and Tatsumi (1957); they derived and studied the three-point equation that 

relates third- and fourth-order moments. As summarized by Monin and Yaglom (1975, 

sec. 19.1), a hierarchy of equations, beginning with the von Karman-Howarth equation, takes 

its simplest form when one additional spatial point is considered for each additional equation. 

Compared with our equation that relates four types of two-point statistics, their equation has 

simpler structure because it involves only two types of three-point statistics. Unfortunately, 

three-point statistics are difficult to measure. Judging by the results obtained here and in Hill 

(1993), an equation involving three-point third- and fourth-order velocity structure functions 

that satisfy local isotropy and local scaling can be derived from the equation by Proudman 

and Reid (1954) and Tatsumi (1957). Our method of using algebraic identities and 

incompressibility conditions on fourth-order statistics would be needed for the derivation.

The three-point statistics complicate discovery of the necessary identities and conditions. 

Proudman and Reid (1954) and Tatsumi (1957) used the assumption that velocities at many
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points have the joint Gaussian probability distribution, combined with the incompressibility 

condition on the second-order velocity correlation to eliminate the large and extraneous terms 

from their equation. Our method obviates the need for these assumptions.

2. DERIVATION OF (2)

Using Monin’s (1959) equation (6) for velocity difference and following his method 

for deriving the first equation in the hierarchy of two-point equations, one immediately 

obtains (2). In doing so, the identity, introduced later in (22), is used for the viscous terms in 

(2). Then the only approximation used to obtain (2) is use of local homogeneity to commute 

the Laplacian and divergence to outside the averages and thereby produce the terms 

2vDijk(r)|/; and Dijkl(r)]r respectively. No approximations are needed for the other terms 

in (2). In this derivation, the quantity Zijk( r) appears as

zaSr) = - ((«*- <)ry+ (Uj- u')rw + (n - uprJk)

and

r(j = («, _ u')\i (uj - uj)\i + (M, “ uP\r (uj ~ uj\v •

This expression for Zjjk( r) reduces to (3c).
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We also derive (2) using a Eulerian reference frame because such derivation reveals 

statistics that must vanish. We begin our Eulerian derivation with the Navier-Stokes equation,

“/ + (“, M,)|/ = -P'% + V«(|„ , (5)

and the incompressibility condition,

u,\, = 0 . (6)

The derivation method shows which quantities must vanish under assumptions of 

incompressibility and homogeneity or local homogeneity. This method gives criteria that can 

be evaluated using data from experiment or numerical simulation. For specific turbulent 

flows, one can quantify the magnitude of the discarded terms relative to those retained.

The following notation greatly reduces the number of terms that must be written.

[... + CP] means to include all terms like the term or terms given explicitly within the 

brackets that are obtained by cyclic permutation of the indices i, j, k. The index l is never 

involved in such cyclic permutation; CP is a mnemonic for cyclic permutation. Also,

~{x x') means subtract from all previous terms the same terms with x and x'

interchanged; that is, unprimed symbols replaced by primed symbols and vice versa. Recall 

that the subscript notation \l and \l' denotes differentiation with respect to xt and x[, 

respectively, and that summation is implied by repeated indices.
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Multiplying the Navier-Stokes equation (5) by UjU', we obtain

Ui UjUk + («,«,)„ ujuk — P\i UjUk + V Ui\ll UjUk (7)

We obtain another equation from (7) by replacing u. u' with u'uk. The resulting two 

equations give four more equations by interchanging indices i with j and i with k. Another 

equation is obtained by multiplying the Navier-Stokes equation (5), as evaluated at x',

by UjUk:

ui uj uk + (u' u')u, u.uk = 1 D'~P\r“juk + V uiUru.uk (8)

We obtain two more equations from (8) by interchange of indices i with j and i with k. 

Adding all nine above-mentioned equations to obtain a single equation, then subtracting the 

equation obtained by interchanging x' and x within this last equation, gives

hik + ruk = huk + v ytjk > (9)

where we define

{ijk ~ j u' U. Uk + CPj " (x X ') (10a)

rUk ^
[« n Uk + (u. u'uk u'l)ll, + CP - (x x') (10b)

V
1 [- P'r UjUk - P|(. (UMk + u'uk) + CP] - (x <r* x') (10c)

yiJk = [uiuju'k\ir+ (uiul + u'u?Ki«) + cp]” ° • (10d)
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Incompressibility was used to obtain r.jk. Define dijk and \)fjjk as

dijk = (“< ~ O (“j ~ u]) K - <) W

\i/... = u.u.u.- u'u'u' . (12)
t ijk i j k i j k x '

Applying the distributive law of multiplication to (11), we obtain the algebraic identity

hjk = Vy*- dijk ■ (13>

Define dm, Jijk, Z,iJk, and 0.,t as

dyU = (“/ " M,') (“7 - Uj) («* ~ “*) («, " «,') (14)

Yy* = («/«* Mz)|z - K ui\r W

z>ijk = - («, uj uk ui)u+ (<«; uk w/)|/' <16)

0y* = '■y* + *y* - (17>

where P.jk is the same as r.Jk in (10b), except |/ and \V are everywhere interchanged.

By applying the distributive law to (14) and differentiating, we have the identity

2 rijk = dijkl\V ” dijkl\l + Yy* + £y* + ®y* • ^ ^

9



Define xijk and §ijk as

r

(19)xijk=1/p

<b... = _L [- P,. u. u. + P!., u' u' + CPl .Yy* p L I‘ j k l> j k J (20)

Applying the distributive law to (19), we obtain the algebraic identity

V = V + * ijk ■ (21)

For any two functions / and g, we have the rule

(fg)\u = (-/[//> ^ + 2(f\,)(g\i) +f(glu) ■ (22)

Applying (22) to y.jk, as defined in (lOd), and defining C)jj as

ui\i uj\i (23)

we obtain

yijk = [(«, uj M*)|ir + (“, uj uk\u ~ 2 K Cy + CP] - (* <->*') (24a)

#y*|n' + *y*i« 2zy* » (24b)
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where

(24c)Zi]k ~ \Uk £ij + CP] (X X ) .

Substituting our identities in (9), we have

%k ~ dm + \ (<W ~ dmi + yijk + 5yt + 0yt) =

*</*+ V + v (%*lrr + Vijk\ii ~ diJk\ir ~ dm\u ~ 2zUk) • (25)

We return to the Navier-Stokes equation (5). Multiply (5) by u.u. and add the three 

equations obtained from cyclic permutation of indices i, j, and k. From the resulting equation, 

subtract the equation obtained by interchanging x and x' to obtain

+ V = - V(H>W„ ♦ 2im) , (26a)

where

Zijk = [“*Cy + CP] - (X <r> X') . (26b)

The terms in (26a) follow from algebra and the definitions (12), (15), and (20); the identity 

(22) was used for the viscous term. Subtracting (26a) from (25) gives

dijk + ~2 (dijki\r dijki\i 7ijk + £ijk + ®ijk) ~

Xijk + V (" dijk\lT ~ dijk\ll ~ 2zijk + 2zijk) •

(27)
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The Navier-Stokes equation (5) and incompressibility condition (6) are valid at every 

time and every point. Equations (9), (25), (26a), and (27) are valid at every time and every 

pair of points x and x' because only laws of algebra and calculus were used to obtain them 

from (5) and (6).

The complicated form of (27) is for ease of obtaining the following results. Assuming 

local homogeneity, we have

(dUki\r) (dijki\i) " (diju)|, • ^

Recall that the differentiations within the left-most and middle expressions in (28) are with 

respect to x' and jc, respectively, but on the right side of (28) the differentiation is with

respect to components of r = x=x'. Homogeneity gives

O
II (29)

Also,

(£>ijk) = - ((“«“; «X)|/> + ((“»*'“»V) (30a)

II 1

3= *r
- JC

1

JC (30b)

- ((«, Uj Uk )|(') ((M; uj uk M/)|z) (30c)

= {(,UMjUk) M',,) - ((«' U' u'k)Ul{l) (30d)

= 0 . (30e)
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In (30a,c), the differentiations are with respect to components of x and x', but in (30b) the 

differentiations are with respect to r. Passing from (30a) to (30b) to (30c) results from 

homogeneity; (30d) vanishes because of incompressibility (6). We have on the basis of local 

homogeneity that

(%k) = {[([(«,'uj uk ~ uiuj<) «,']„) + CP

- (Jc x') (31a)

([(“/ uj uk ~ ui uj <) ul) )u ~ ([(«,' uj uk ~ ui uj <) «/] )|; + CP - (x ^ x') (31b)

= 0 .

From local homogeneity, we also have

ijk\l'l') ijk\ll) (d‘jk)\„ • (32)

Therefore, averaging (27) and using homogeneity, we have

(d‘Jk) (dijkl)U ~ (Xijk) 2V [(dijk)Ul + (Zijk Zijk)] ’ (33)

which is the same as (2).

13



The purpose of the Eulerian derivation method is now clear. We have established 

that the validity of (33) under the assumption of homogeneity requires that the quantities

<v>. <9W>. and v <<W-duw> <* veryrauch smaller ,han

the terms in (33). As discussed in the first paragraph of this section, (33) is immediately 

obtained using Monin’s (1959) method of derivation. Therefore, all the above quantities must 

be very much smaller than the term in (33) under the assumption of local homogeneity. 

Indeed, each of these quantities vanishes for r - 0; therefore, under the less restrictive 

assumption of local homogeneity, these quantities must become very small relative to terms in 

(33) as r decreases. This establishes quantitative criteria that can be tested in specific cases 

by use of data from experiment or from numerical simulation.

Note that homogeneity and (26b) give <zijk> = 0. Then, under homogeneity (3c) can 

be written as

Zijk(r) = <zijk>

= +„ - u&k - u.c;, - u&.).

3. SIMPLIFICATION BASED ON LOCAL ISOTROPY

Next, we simplify (2) by assuming local isotropy. Local isotropy allows kinematic 

relationships of both Xijk(r) and Zijk(r) to other statistics. In the Appendix, we give such 

relationships. We use the preferred Cartesian coordinate system having its 1-axis along the
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vector r. The subscript A denotes either axis transverse to r; that is, A, = 2 or 3. No 

summation is implied by repeated Greek subscripts.

Each of the third-rank tensors in (2) is symmetric under interchange of every pair of 

indices, and can therefore be written in terms of two scalar functions [cf. Monin and Yaglom 

(1975), Eq. (13.80)]. The scalar functions depend only on r = | r |. For Xjjk(r), the 

isotropic-tensor formula is

(34)xijk(r)

where

W =yrijk
rirjrk (35a)

and

r r r
co... = _i 8.t + JL 8.t + _i 8..

y* r Jk r Ik r

(35b)

Therefore, in the case of local isotropy, (2) gives two equations relating scalar functions.

Of course, D.Jk(r) and Zijk(r) also obey (34) with the symbol X everywhere 

replaced by D and Z, respectively. However, incompressibility further simplifies the formulas 

for Dijk(r) and Zijk(r). The components of Z.jk that are nonzero under local isotropy are

15



Z,,,('•) - 3♦3«c;1- «,C„>

and

2iU(r) ~ (Mi^u Mi^u) + ^ (MxCa Mx^a)

+ (Mi^u_ Mi^u) + 2 (Ma.Ca- ma.Cix) »

where A, is 2 or 3. Both <u'C,jk> and the triple-velocity correlation <u' UjUk> are symmetric 

under interchange of two indices and solenoidal in the third index. Therefore, <u'C,jk> has 

the same isotropic-tensor formula as <u' uMk>, which is given in Eq. (12.138) by Monin and 

Yaglom (1975). Adding all such formulas as required in (3c) yields an isotropic formula that 

is symmetric under interchange of any pair of indices. Since <u'C,jk> obeys the same 

incompressibility conditions as <u' uMk> [namely, Eq. (12.137) in Monin and Yaglom 

(1975)], the incompressibility condition on Zijk is easily derived to be

Ziu(r) = \ [rZm(r)]U) •
(36)

The superscript in parentheses indicates the order of differentiation with respect to r. 

Substituting (36) in the isotropic formula similar to (34) gives

Zm(r)- rZlli(r)] W.

[Zin(r)+rZ\\\(r)} (37)
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The isotropic-tensor formula for D.jk( r) is well known; it is (37) with the symbol Z 

replaced everywhere by D [see Monin and Yaglom (1975), Eq. (13.91)]. Likewise, the 

incompressibility condition on Dijk(r) is (36) with Z replaced by D:

*V')-4[rD111(r)]<,>. <38)

Performing the Laplacian on the isotropic-tensor formula for Dijk( r) gives

V^|«- Mr)Wljk+B(r)%k, (39)

where

Mr) = - D,„(r) + i Dill(i-) - -1 Dffifr) - 1.1 Dm‘
2

r D0)‘ 
2

(40a)

B(r) S 1 
o

4 r»(l)—r D...(r) - ’ D',;i(r) t 5Z)“(r) + rDUifr)»(3)i (40b)

The isotropic-tensor formula for Dijkl(r) is given in Monin and Yaglom (1975) and Hill
#

(1993). The first-order divergence required in (2) is easily performed on this isotropic tensor 

formula. The result, i.e., Dijkl(r),r has the same form as (34).
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From the foregoing results, the two scalar equations implied by (2) are

+ 3DnU(D] - X]U(r) + 2 V [5(r) + Ziu(r)j

(41a)

and

A.i<r> + £>;!!.('•) * 7 p,nl(r) - 3V(0] - -X,„(r) * 2v [C(r) ♦ Z,„(r)] ,

(41b)

where

C(r) = A(r) + 3B(r) = - -± Dm(r) + 1 lOO + /O') , (42)
r

and (36) and (38) can be used to eliminate DlU(r) and Ztu('). Multiplying (41b) by 

r/6 and differentiating the resultant equation, then substituting (36) and (38) and subtracting 

(41a), gives

- J. [rXm(r)]'» * X,u(r) - L D®n(r) * I <>.(0 - 2 £>(“u(r)

- — 2?llu(r) + — .
r 3 r

Both the time-derivative and viscous terms have been eliminated from this result. It can be 

shown that this result can be obtained from the incompressibility condition (53) in sec. 6.

18



4. INERTIAL RANGE OF Xijk

We now consider the inertial range using (41a,b). Kolmogorov’s (1941) analysis 

established that

Dm(r) = -ier + 6vZ>(,?(r) , (43)

where £ is the rate of dissipation of turbulence kinetic energy per unit mass of fluid, and 

Dn(r) is the longitudinal component of the second-order structure function of velocity. 

Kolmogorov showed that (43) is valid for large Reynolds numbers under the assumptions of 

local homogeneity and local isotropy, from which local stationarity follows. Equation (43) 

will be used to quantify the viscous terms in (41a,b).

For the inertial range (Hill, 1993; Hill and Wilczak, 1995),

Ca £4/3 r “Daa<*(r) (44)

where subscripts a and P may take the values 1, 2, or 3 and

4 _ 2p (45)
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For purposes of calculation, we will use the value p = 0.25 as recommended in the review by 

Sreenivasan and Kailasnath (1993). Following Hill (1993), we define the dimensionless 

universal constants

C 1C'-'ll ' (46a)

C 1C (46b)

Using (38), (43), (44), and (45), we consider the term Z)lU(r) in (41a) and Z)ni(r) in 

(41b) relative to the other terms on the left side of (41a,b). Following Monin and Yaglom 

(1975), we take £ to be of the order of the cube of the root-mean-squared velocity divided by

an external scale, and the time scale for changes in £ to be of the order of the external scale

divided by the root-mean-squared velocity. Then, we see that the terms Diu(r) and Z)m(r) 

are negligible in the inertial range. Specifically, these terms are negligible for values of r that 

are very much smaller than the external scale. The viscous terms in (41a,b) must be 

negligible for r in an inertial range; we prove this fact later in this section. Thus, for the 

inertial range, (41a,b) become

*iu(0- ~D 37 puuOO- 3Duu(r)] (47a)

and

Xm(r) - -D(,i>,(r) - 1 [C„,,(r) - 3Sm(r)] . (47b)

20



Substituting (44), (45), and (46a,b) in (47a,b) gives

Dnu(r)
(q ^1+2 + 1 m __

_
1

l2 J 3 *,xj
(48a)

*m(0 = -Dun(r) 1 + 1 + 3 Ha (48b)

Using the measured values //u = 1.5 and Ha = 0.43 from Hill and Wilczak (1995), the 

quantity in square brackets in (48a) is -0.3, which is only 13% of the largest term in those 

brackets. The error in the measurements of 7/u is at least 13%, but H1X is more accurately 

measured. We showed (Hill and Wilczak, 1995) that the values Hxx = 1.5 and H[X = 0.43 

are not sufficiently accurate to obtain the level of the inertial range of Dp(r). On the basis 

of pressure spectra obtained from both experimentation and numerical simulation, we obtained 

Hp - 1/3 (Hill and Wilczak, 1995), where Hp is the universal constant determining the 

inertial-range level of Dp(r). Using HP = 1/3 in (41a) of Hill and Wilczak (1995) that 

relates HP to and HIX, we obtain Hxx = - (q2/4) + (3/2) (2 + q) HIX, which gives 

Hxx = 1.706 if HIX = 0.43. Using these values, the quantity in square brackets in (48a) is 

only 1% of the largest term within the brackets. We conclude that the values of Hxx and 

HIX are too poorly known to obtain the quantity in square brackets in (48a). Therein lies an 

opportunity. If numerical simulation can produce XlU(r) and Duxx(r) within the inertial 

range, then (48a) gives a stringent constraint on the value of HXXIHIX. This constraint can be 

used to better determine 7/u and HIX, and hence helps to determine the inertial-range level of 

Dp{r).
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On the other hand, substituting HlX = 0.43 in the quantity in square brackets in (48b) 

gives a value that is 21% of the largest term within the square brackets, so the error is not

worse than 50%. Therefore, from (48a,b) we obtain

(49a)X2aa(r)

Xm(r) - - 0.7 iDllu(r) = -0.7 Cnewr*-1 (49b)

We express (49a) as a proportionality because the coefficient is completely uncertain at 

present. The coefficient in (49b) is uncertain by not more than 50%. With these 

uncertainties in mind, in an inertial range, |XlU(r)| < |Xm(r)|; Xin(r) and Xiu(r) 

have an approximately rm power law, and Xul(r) is negative.

The inertial-range contributions of the viscous terms in (41a,b) can now be estimated. 

From (43), the inertial-range asymptotic formula is £>m(r) = -4/5 er, substitution of which 

into (40a,b) or (42) gives A(r) = B(r) = C(r) = 0. Thus, it is only the very small viscous term 

in (43) that gives the nonzero evaluation of A(r), B(r), and C(r) for the inertial range. 

Substituting (43) into (42) and using the inertial-range formula Dn(r) = Ke^r213, where 

K - 2 is Kolmogorov’s constant and the intermittency parameter p is neglected, we have for 

the inertial range

C(r) “ 40V£2/3r'7/3 .
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The same result applies to B{r) with 40 replaced by 8.6. In (41b), one viscous term is 

2v C(r), which is to be compared with the term -Xin(r); using (49b), the ratio of these 

terms is

- (28/F) (r/y\)~m ,
Am(r)

where r\ = (v3/e)1/4 is Kolmogorov’s microscale and F = Cu/K2 is the inertial-range flatness 

factor. Since F has the value of about 10 at large Reynolds numbers, it follows that 

2v C(r) « -XIH(r) for r » T|. The same result applies to 2v B(r) relative to -Xiu(r) in 

(41a), although the proportionality constant is uncertain because of (49a).

It is important to note that C(r) and B(r) are not correctly obtained on the basis of 

dimensional analysis using inertial-range parameters e and r; in fact, this gives C(r) er'1.

Standard dimensional analysis for the inertial range uses £ and r as the only relevant 

quantities and yields Zm(r) « er'1 and Ziu(r) er"1. Then, in comparison with (49b),

2vZm(r)
oc (r/ri)"473 ,

where the intermittency parameter p has been neglected. Comparing 2vZ,n(r) with any of 

the terms in (41b) that contain fourth-order velocity structure functions also leads to this same

23



estimate. Therefore, in (41b), and similarly in (41a), the viscous terms are negligible in the 

inertial range because (r/rj)'4/3 becomes very small for r » r\.

In the derivation of (41a,b), the terms 2v B(r) and 2v C(r) are obtained by operations 

analogous to those that gave the term 6v Dl$(r) in Kolmogorov’s equation (43). Similarly, 

the terms 2vZ,u(r) and 2vZul(r) are analogous to the term -4/5 er in (43); by this 

analogy, one wonders if 2vZlu(r) and 2vZm(r) have essential roles in the inertial range 

since -4/5 er does have an essential role in (43) for the inertial range. However, (41a,b) 

differ from (43) in an essential way; namely, (41a,b) can balance at inertial-range scales as in 

(47a,b) without the terms in question, but (43) cannot balance without -4/5 er.

In the next section, we show that the analogy between (41a,b) and (43) does hold in 

the asymptotic viscous range. In (41b), for example, 2v C(r) and 2v Zm(r) are 

asymptotically (as r —> 0) equal but opposite as are 6v D\/(r) and -4/5 er, with the 

remaining terms in these equations contributing only in the next order of smallness.

5. VISCOUS RANGE AND RELATIONSHIPS BETWEEN DERIVATIVE MOMENTS

As r —¥ 0 in the viscous range, all terms in (2) and (41a,b) are of order r3. This is 

obvious for all terms except the viscous terms [as can be seen from definitions of (1) and 

(3a,b)]. For the viscous term, we return to the last term in (9) and use (lOd). To this we 

must subtract the viscous term that produces the viscous term in (26a), namely,
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(50)VYy* = K“, + CP1 ~ X').

That is, the viscous terms that produce the entire viscous term in (27) are

v (ytf* - Yijk) - v {[«. <|/r + (“i uj + “;) K|//) - ui UJ (uk\„) + CP] - (x x ')} . (51>

Consider the Taylor series expansion of the right side of (51). The terms of even order in 

rn vanish because the coefficients arising from the terms in (51) denoted by ~(x x')

cancel those from the quantity in square brackets in (51). Also, these terms vanish by local 

isotropy. The non vanishing terms are of odd order in rn. The Taylor series expansion of the 

term given explicitly in (51) minus the Taylor series expansion of the corresponding term 

from (jc <-» x') gives zero identically for the term proportional to rn. Hence, the viscous 

term is of order r3 as r —> 0. Note that no averaging is performed in (51), so this result is 

independent of any assumptions of local homogeneity or local isotropy. The quantities B(r), 

Zlu(r), C(r), and Zm(r) in the viscous terms of (41a,b) are all of order r as r —> 0.

Hence, the vanishing of the viscous terms of (41a,b) to order r3 implies relationships 

between third-order derivative moments. These relationships are easily obtained and are not 

given here.

Since all terms in (41a,b) are of order r3 as r 0, we can obtain two complicated 

relationships between third-order and fourth-order velocity-derivative moments and moments
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involving a product of velocity derivatives and pressure derivatives. These relationships are 

easily obtained and are not given here.

6. RELATIONSHIP TO THE PRESSURE STRUCTURE FUNCTION

We can use (2) to derive formulas for Dp(r) in terms of Xm(r) and XlXk(r). The 

first step is to prove on the basis of local homogeneity that

Zy*(^)|yt = Dijk(<r\ijk = 0 >

which, as shown by Hill (1997), leads immediately to the incompressibility results (36) and 

(38) on the further basis of local isotropy.

The relationship Dijk(r)^..k = 0 has been proven by Hill (1997) using only steps that 

are valid under local homogeneity. The following analogous steps easily obtain Zijk(r)Ujk = 0. 

Commuting the three derivatives to inside the average defined in (3c) gives, for example,

V*'),#. - <w,.+ - «,t;, - cp),,,,} , (52a)

where the distributive law of multiplication has been used on the first term in (3c) and the 

other two terms are implied by the CP notation. The second explicit term in (52a) vanishes 

because the derivatives are with respect to x. The fourth explicit term in (52a) vanishes
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when operated on by | i because of incompressibility, i.e., u.^ = 0. Now commute the 

derivatives to outside the average on the basis of local homogeneity and return them to inside 

the average as derivatives with respect to then (52a) becomes

:»^+CPW>Z,,(r) (52b)

As with (52a), the first explicit term in (52b) vanishes by incompressibility and the second 

term vanishes because it does not depend on x '. Thus, we have Z.jk(r)\.jk = 0 on the basis 

of local homogeneity. Hence (36) and (38) are valid on the basis of local homogeneity, local 

isotropy, and incompressibility.

Performing the third-order divergence of (2) then gives

^ijkit ^)\ijki Xljk( r)\ijk • (53)

We showed (Hill and Wilczak, 1995) that the pressure structure function, as defined in (4), 

satisfies

DP(r\iikk = -2(2(0 , (54)
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where

Q(n = («;«;) |*r>

"g ^ijkl^\ijkl ’ (55)

The Laplacian is applied twice on the left side of (54). Local homogeneity is needed for 

(53), (54), and (55); local isotropy is not needed here (Hill and Wilczak, 1995). 

Consequently, on the basis of local homogeneity, we have

oF(.nmk - -2c(f) - iyn.
I ijk

(56)

Assuming isotropy, Batchelor (1951) showed how to solve such an equation for 

Dp{r) in terms of Q(r). We showed (Hill and Wilczak, 1995) that Batchelor’s solution 

applies in the case of local isotropy. Performing the third-order divergence of the isotropic 

formula (34), we have

G(r)- --f (57a)

- - 1 XE|(r) - 1 -Or) - -L X'.lUr) * i XS(r) ♦ ± xS(r)
r r2 r r2

(57b)
6 

Therefore, the pressure structure function can be expressed in terms of the scalar functions 

Xm(r) and X,u(r). Substituting (57b) into the equation relating Dp(r) and Q(r) [Hill and
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Wilczak, 1995, Eq. (5)], as obtained from Batchelor (1951)] and integrating by parts using the 

technique in Hill (1993), we have

2 °°Dp(,r) = J xiu(y) dy * L. J>2 [3 XIU0<) - *„,().)] dy (58a)

In addition, we recall that

Dp(r) = - j Duu(r) + 1 r2 Jr3 [Duu(y) + D^iy) - 6Dllyy(y)] dy
r

r

J 0
(58b)

and

Dp(r) = - 2 V„(r) - 1 J [V„(y) - Vu(y)] dy . (58c)
r 0

In (58b), we repeat the result in Hill (1993) and Hill and Wilczak (1995), and (58c) is given 

in Hill (1996) in terms of components of

±- ((/>-/>')(uiUj -«>;)> (59a)

= (P«,.«,) - (P'U'Uj) . (59b)

Isotropy implies that (59a,b) are equal (Hill, 1996). Results in (58a-c) complete the above 

equalities between integrals of three types of statistics. In addition, (58a,c) can be used to
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relate Dp(r) to a combination of the statistics U{j{r) and Ejjk(r), which are defined in the 

Appendix. Whereas (58c) requires isotropy, (58a,b) require only local homogeneity and local 

isotropy. The pressure structure function can be used to derive the mean-squared pressure 

gradient, pressure-gradient correlation, pressure variance, and pressure spectrum. These 

quantities are obtained using (58b) in Hill and Wilczak (1995). Use of (58a,c) in the 

equations in Hill and Wilczak (1995) easily yields these quantities in terms of Vu(r) and 

Vu(r), as well as Xm(r) and XlU(r).

7. SENSITIVITY TO INCOMPRESSIBILITY AND LOCAL ISOTROPY

In assessing the sensitivity of the foregoing results to the assumptions of local isotropy 

and incompressibility, we consider the asymptotic case of Reynolds number approaching 

infinity such that we can let r/L be as small as we like with r in the inertial range and L 

a scale of the energy-containing range. As shown in Hill (1993), the relationship in (58b) is 

very sensitive to departures from isotropy and incompressibility. This is because the terms in 

(58b) are significantly larger than Dp(r) and because incompressibility eliminates yet other 

terms that grow without bound relative to the remaining terms as the asymptotic case is 

approached. For the same reasons, it is clear that our results are also sensitive to departures 

from isotropy and incompressibility. The sensitivity to departures from isotropy of our results 

for X.Ar) are illustrated in (48a,b) and the discussion of these equations.
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The two statistics <ujujuk u't> and <u' u' u' m;> in (30b) are asymptotically much 

greater than D.jkl(r). Consequently, the vanishing of the derivative (30b-e) by 

incompressibility causes sensitivity of the final result (2) to the accuracy of incompressibility 

in the asymptotic case. Experimentation or numerical simulation would have to determine the 

correlation of dilatation and the triple-velocity product that appears in (30d); otherwise, a 

nonvanishing value for <^ijk> would indicate inaccuracy of either homogeneity or 

incompressibility because homogeneity is also needed for (30a-e).

8. SUMMARY

Equation (2) is derived from the Navier-Stokes equation, local homogeneity, and 

incompressibility. Monin’s method and a more lengthy Eulerian derivation both give (2). 

Criteria for validity of (2) on the basis of local homogeneity are given below (33) at the end 

of sec. 2. These criteria can be tested by using data from experiments or from numerical 

simulation. The two scalar equations (41a,b) are obtained from (2) on the basis of local 

isotropy. These latter equations give the inertial-range formulas, (48a,b) and (49a,b), for the 

components X|U(r) and Xiu(r), where 1 and X denote axes parallel and transverse to r. 

These components have a (1/3) - (2p/9) inertial-range power law and are proportional to e4/3; 

this result can also be derived on the basis of dimensional analysis followed by averaging 

over local fluctuations in the e. However, dimensional analysis does not give the relationship 

in (48a,b) between inertial-range proportionality constants of X|n(r), Z)U(r), Dmi(r),
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D^n(r),md £>nu(r). Xlu(r) is negative in the inertial range, and |X,u(r)| < |Xm(r)|. 

Numerical simulations that determine Xiu(r) and Duu(r) in the inertial range can 

determine HXI/HIX and hence help determine the inertial-range level of Dp(r). The leading- 

order viscous-range behavior of components of X.jk( r) is r3. For the case of local isotropy, 

(58a) relates the pressure structure function to integrals of components of XjJk(r). Therefore, 

X.jk(r) is also related to the mean-squared pressure gradient, the pressure-gradient 

correlation, and the pressure spectrum. Equations (58a-c) relate integrals of components of 

the fourth-order velocity structure function, of the pressure-velocity-velocity correlation, and 

of X. Xr). Our results are demonstrated to be sensitive to the accuracy of the assumptions 

of local isotropy and incompressibility.
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Appendix

Isotropy allows relationships between different statistics. We establish such 

relationships for X.jk and Z..k. Isotropy gives

(UM= 0
(- (llj - up (Uk - u')) = (P{. {u. - u') (Uk - u')) 

(p\iUjUk) = 0 .

Applying these relationships to the definitions in (1) and (3c), we have the following 

relationships allowed by isotropy,

X...ijk
+cp])

^ [— Vj|* + Uij\k + CP ] + 2 ElJk ,

where

Uij = ^ [2 {P ui uj) ~ {P u'j + ui u?)\

= -i (P [«,• 0*j - «/) + Uj (u. ~ ll/)])

= J- ((Pu. - P'u'.) (u.-u') + (Pu. - P'u') (u. - up) , 
zp

Em = pp<“,i^“y|>; + cp>.

35



and Vu is defined as in (59) and has several alternative formulas allowed by isotropy (Hill, 

1995).
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